المساعد الشخصي الرقمي

مشاهدة النسخة كاملة : لغز خطير جدا جدا !!!!


د سالم الفيفي
06-25-2009, 10:38PM
السلام عليكم

هذا لغز خطير جدا من منتدى أميركي .. قمت بترجمته للعربي وبإنتظار حلولكم !!!!!

Albert works in a clock factory. He has noticed that his favourite clock in the factory takes 7seconds to
strike 7 o’clock. How long will the same clock take to strike 10 o’clock?

http://i281.photobucket.com/albums/kk218/saudimempire/untitled.jpg


شخص إسمه البرت , موظف في مصنع ساعات , و ساعته المفضلة تأخذ من الوقت سبع ثواني حتى تكمل سبع دقات عندما تحين الساعة السابعة , فكم من الوقت ستستغرقه الساعة لإتمام عشر دقات عندما يكون الوقت تمام العاشرة !!

ريف النشاما
06-25-2009, 10:49PM
السلام عليكم ورحمة الله وبركاته

كيفك حالك يا دكتور ان شاء الله تكون بخير و صحة وعافية

لغزك خطير جداً

و سوف اكون متواجد لحله

انتظر دقائق

عقاب
06-25-2009, 10:52PM
ابي ارررروح اجيب قلم واجيكم


لاتحلونه انتظروني


خخخخخخخخخخخخخخخخخخخخخخخخخ

رياض الهديرس
06-25-2009, 11:07PM
اتوقع عشر ثواني


تحياتي

د سالم الفيفي
06-25-2009, 11:13PM
السلام عليكم ورحمة الله وبركاته

كيفك حالك يا دكتور ان شاء الله تكون بخير و صحة وعافية

لغزك خطير جداً

و سوف اكون متواجد لحله

انتظر دقائق

الأخ الكريم فواز ...

الحمد لله بخير عساك بخير و حياك الله ..

و ننتظر إجابتك ..

د سالم الفيفي
06-25-2009, 11:15PM
ابي ارررروح اجيب قلم واجيكم


لاتحلونه انتظروني


خخخخخخخخخخخخخخخخخخخخخخخخخ

الأخ عقاب ..

أنت مشهور بحل الألغاز .. و شكله ما راح يحله غيرك

بالإنتظار ..

د سالم الفيفي
06-25-2009, 11:17PM
اتوقع عشر ثواني


تحياتي

الأخ رياض حياك ..

حاول مرة أخرى ..

ترى الأمريكان مو بسهلين !!!!!!!

الحياةكلمه
06-25-2009, 11:21PM
طيب اتوقع 37 دقه صح؟؟؟؟
يسلموووو والله لغز خطيراااااا جددد

د سالم الفيفي
06-25-2009, 11:29PM
طيب اتوقع 37 صح؟؟؟؟
يسلموووو والله لغز خطيراااااا جددد

الحياة كلمة ,,

حياك

حاولي مرة أخرى ... الحل ليس 37 دقة ولكن نعطيك 6 من عشرة على التفكير العميق !!!!!!!!

على فكرة الساعة ستضرب عشر دقات عند الساعة العاشرة والحل مطلوب بالثواني

الحياةكلمه
06-25-2009, 11:36PM
طيب 34 ثانيه ها؟؟؟؟

شموخ نجد
06-25-2009, 11:38PM
اخوي الدكتورسالم الفيفي
لاهنت على هذاالغز الصعب جدا
<<فاشله بالحساب
اشوف تحت الاستاذه العطاويه
وهذا تخصصها وان شاءالله بتجيب الحل
لي عوده بالمحاوله
مودتي للجميع
وفقكم الله

ريف النشاما
06-25-2009, 11:40PM
أنا راح ارمع للغز يا دكتور

اذا قلنا بأن الساعة السابعه تدق سبع دقات و تحتاج لسبع ثواني

اذا

الساعة العاشرة راح تحتاج الى عشر دقات في عشرة ثواني صحيح

لكن سوف تحتاج الى الوقت الذي استغرق بين الدقات السبع و زياده عليه النصف

مثلا

سبع دقات بينها وقت فارغ و محسوب كما هو الحال بين كل ثانيه و ثانيه و بين كل دقه و دقه

يعني بين السبع دقات هناك ست اوقات غير محسوبه

فتكون العشره دقات تساوي

عشرة ثواني + نصف الوقت الذي لم يحسب بين السبع ثواني الاولى

طلعت معي كذا

و ان شاء الله تكون الحل

رياض الهديرس
06-25-2009, 11:45PM
اتوقع مره ثانيه

3600 ثانيه

عقاب
06-25-2009, 11:46PM
دكتور

مشهور بالالغاز الله يطول عمرك


مو بالمسائل الرياضيه اللي ما عقدني الا هي



هههههههههههههههههههه

د سالم الفيفي
06-25-2009, 11:47PM
طيب 34 ثانيه ها؟؟؟؟

الحياة كلمة ..

ما شاء الله عليك والله انك ذكية

الدقات راح تكون 7 و 8 و 9 و 10

أي 34 دقة والحل مطلوب بالثواني نرفع لك الدرجة إلى 8 من عشرة واحمدي ربك يعني جيد جدا ههههههه

لكن الى الأن ما جبتي الحل المطلوب ...

غالب المطيري
06-25-2009, 11:50PM
اتوقع والله اعلم 7 دقات

د سالم الفيفي
06-25-2009, 11:53PM
اخوي الدكتورسالم الفيفي
لاهنت على هذاالغز الصعب جدا
<<فاشله بالحساب
اشوف تحت الاستاذه العطاويه
وهذا تخصصها وان شاءالله بتجيب الحل
لي عوده بالمحاوله
مودتي للجميع
وفقكم الله

الأخت الكريمة

شموخ نجد

حياك .. وأنا متأكد أن العطاوية راح تجيب الحل مادام تخصصها رياضيات ..

راح أنزل حلول الخواجات ههههه حتى نرى كيف يفكرون ...

مشكورة على مرورك

عقاب
06-25-2009, 11:53PM
دكتور



ياركب اللي يجمع الضرب والطرح= ويمكن بعد قسمه بجنبه تباريه

في جدولٍ للضرب جابه على الجرح= ياللي تجيب العلم كودك توديه



دكتور لغز مهجن وش رايك فيه

خخخخخخخخخخخخخخخخخخ

د سالم الفيفي
06-26-2009, 12:03AM
أنا راح ارمع للغز يا دكتور

اذا قلنا بأن الساعة السابعه تدق سبع دقات و تحتاج لسبع ثواني

اذا

الساعة العاشرة راح تحتاج الى عشر دقات في عشرة ثواني صحيح

لكن سوف تحتاج الى الوقت الذي استغرق بين الدقات السبع و زياده عليه النصف

مثلا

سبع دقات بينها وقت فارغ و محسوب كما هو الحال بين كل ثانيه و ثانيه و بين كل دقه و دقه

يعني بين السبع دقات هناك ست اوقات غير محسوبه

فتكون العشره دقات تساوي

عشرة ثواني + نصف الوقت الذي لم يحسب بين السبع ثواني الاولى

طلعت معي كذا

و ان شاء الله تكون الحل

الأخ فواز ..

مبروك

جبت حل اللغز .. الحل يكمن في الفترات بين كل دقة و دقة جزء من الثانية ..

و هذا حله كما هو بالموقع

The original solution was as follows. When the clock chimes 7 o’clock it will have 7 strikes and six pauses:

توجد 6 أجزاء من الثانية بين كل دقة و دقة

هكذا

I_I_I_I_I_I_I


We know that this took 7 seconds, so each pause will take 7/6 seconds
.
وهذا يعني أن بين كل دقة و دقة 7 على 6 من الثانية


Chiming 10 o’clock involves 10 chimes and 9 pauses

و عند العاشرة

هناك 9 فترات بين الدقات كل فترة 10 على 9 من الثانية
I_I_I_I_I_I_I_I_I_I


And thus this will take 9*7/6 seconds, which works out at 10.5

و بضرب الوسطين في الطرفين الحل هو 10.5 أي عشر ثواني و خمسة من عشرة من الثانية ..

غالب المطيري
06-26-2009, 12:04AM
ماشاء الله عليك يافواز

يعطيك العافية اخوي الدكتور سالم الفيفي

<<< قال 7 قال هههههههههههه

الحياةكلمه
06-26-2009, 12:07AM
مبروك يافواز كان نفسي انا احلها بس يلاااا
الف مبررروووك لك
ومشكوور دكتورنا على اللغز الرائع

د سالم الفيفي
06-26-2009, 12:07AM
اتوقع مره ثانيه

3600 ثانيه

الأخ رياض ..

أنت حسبت جميع الوقت وهناك الكثير طلعوا بحلول مثل حلك ..

ولكن المطلوب الزمن أثناء الدقات أي تمام العاشرة ..

شموخ نجد
06-26-2009, 12:09AM
الف مبروك يافواز
ماشاءالله عليك جبتها
الله يحفظك
بنتظار لغزك القادم
والف شكر لدكتورعلى الغز
والشكرموصول للاخوان على المحاولات

دمتم بود

د سالم الفيفي
06-26-2009, 12:10AM
ماشاء الله عليك يافواز

يعطيك العافية اخوي الدكتور سالم الفيفي

<<< قال 7 قال هههههههههههه

الأخ الكريم غالب المطيري

حياك الله ..

و مبروك للأخ فواز الجل ..

ريف النشاما
06-26-2009, 12:11AM
الله يبارك فيك يادكتور

والله فكرت فيها

وقلت مستحيل راح تكون اكثر من 10 ثواني

لأنها ساعه و لا بد ان تكون دقيقه قلت راح تكون اكيد

10 ثواني بس قلت مستحيل الدكتور راح ينزل لغز سهل

لابد فيها زياده

و الحمد لله انها جات صحيحه

و الحمد لله

و الله يبارك فيكم جميع و كل من حضر

وعلى فكره تراني كنت طالب ممتاز في الرياضيات >>>> مسوي فاهم

خخخخخخخخخخخخخخخخخخخخخخخ

عقاب
06-26-2009, 12:12AM
فواز مبروك

مبروك

مبروك


قدها الامريكان ماهم اذكى منا اذا بالشعبي ازهلهم

واذا بالمسائل عليك فيهم

ههههههههههههه

د سالم الفيفي
06-26-2009, 12:15AM
طيب يعني صح 34 دقه ؟؟
واذا صح كيف انت قلت ستضرب عشر دقات عند وصولها الساعه العاشره

الأخت الكريمة

كان المطلوب في اللغز عدد الثواني وليس عدد الدقات .. والثواني المطلوبة يجب حساب الفراغات بين كل دقة و دقة

وصاحب اللغز يريد الوقت بالثواني الذي تستغرقه عشر دقات ...

د سالم الفيفي
06-26-2009, 12:18AM
الله يبارك فيك يادكتور

والله فكرت فيها

وقلت مستحيل راح تكون اكثر من 10 ثواني

لأنها ساعه و لا بد ان تكون دقيقه قلت راح تكون اكيد

10 ثواني بس قلت مستحيل الدكتور راح ينزل لغز سهل

لابد فيها زياده

و الحمد لله انها جات صحيحه

و الحمد لله

و الله يبارك فيكم جميع و كل من حضر

وعلى فكره تراني كنت طالب ممتاز في الرياضيات >>>> مسوي فاهم

خخخخخخخخخخخخخخخخخخخخخخخ

مبروك يا أخ فواز جبتها .. مكمن اللغز في الفترات بين كل دقة و دقة ..وهو جزء من الثانية ..

د سالم الفيفي
06-26-2009, 12:23AM
فواز مبروك

مبروك

مبروك


قدها الامريكان ماهم اذكى منا اذا بالشعبي ازهلهم

واذا بالمسائل عليك فيهم

ههههههههههههه

الأخ عقاب

على فكرة والله أننا أذكى منهم فقد استغرقوا اسبوعا لين جابوا الإجابة الصحيحة .. وهنا أنقل حلولهم للي حاب يشوف ... و على قولك لغز مهجن ..


52 Responses to “Answer to the Friday puzzle!”
Miko Says:

June 14, 2009 at 11:03 pm | Reply
Let x be the length of a chime and y be the length of a pause. Then 7 chimes in 6 seconds means that 7x+6y=7. If it were also the case that we had ten chimes in ten seconds, then 10x+9y=10. Using basic linear algebra, this system of equations has the unique solution (x=1, y=0). The fact that this is a solution is perhaps not surprising, but the significant fact is that this solution is unique, so unless the pause takes absolutely no time at all, there is no way that it’d take ten seconds for ten chimes.

Additionally, the matrix
7 6
10 9
is invertible, so there is a unique solution (x,y) for any amount of time you’d like ten chimes to take (although some won’t work physically since x or y would be negative).

ScreamingGreenConure Says:

June 14, 2009 at 11:21 pm | Reply
Oh my god. I actually got it.

Shane Killian Says:

June 14, 2009 at 11:47 pm | Reply
It’s 10.5 seconds if you consider the end to be the start of the last chime. It’s 11.6 seconds if you consider the end to be the start of where the 11th chime would begin. And if you consider the end to be the total amount of time it takes for the chime to fade, of course we don’t have enough information.

Jim Says:

June 15, 2009 at 8:57 am
That’s not correct. If you consider the end to be where the next chime would begin, then the original 7 chimes taking 7 seconds would have been exactly 1 second per “chime-until-start-of-next”, and the answer would be 10.

Sally Says:

June 15, 2009 at 2:04 am | Reply
My answer was three hours.

imeaj Says:

June 15, 2009 at 4:54 am
I was trying to solve this puzzle and was unwilling to succumb to doing any math when my mother walked up behind me and after a moment said, “I think it’s three hours.” Brilliant.
Glad there’s more who came up with this solution too!

richardn Says:

June 15, 2009 at 2:19 am | Reply
Sally, you are awesome! I love your solution.

ScreamingGreenConure Says:

June 15, 2009 at 2:27 am | Reply
Oh wait, no I didn’t. I took each chime and then each pause as a seperate unit. I knew there had to be 6 pauses and 7 chimes in 7 seconds, and that makes 13 units total. I divided the 7 seconds by that and got 0.538. 10 chimes meant 9 pauses, so I multiplied 19 by around 0.538 to get 10.23.
But seriously, that’s a fraction of a second off. I think I still deserve a cookie.
Oh yeah, I decided the chimes and pauses were of equal length because nobody indicated otherwise, and I wasn’t going to earn 100 points by sitting around the entire weekend making up arbitrary chime and pause lengths.

Courtney Says:

June 15, 2009 at 3:09 am | Reply
Sally,

I thought the same thing!

Cheers.

Kasandra Says:

June 15, 2009 at 3:26 am | Reply
I thought of it entirely differently, I thought it would take 3 hours and 3 seconds from the end of the seven o’clock chime to the end of the ten o’clock chime.

Richard Says:

June 15, 2009 at 3:32 am | Reply
Got it right (of course)

The 0.1 nanosecond guy

Mike Says:

June 15, 2009 at 3:45 am | Reply
Miko’s already solved it, but my 2c worth of further simplification: if the length of the chime is x seconds, the total time to strike 10 chimes will be 10.5 – 0.5x, e.g. if the chime is 0.2s long, the total time will be 10.4s. The limits for the total time are 10s (where x=1 and y=0, i.e. no interval between the chimes) and 10.5s (where x=0s and y=7/6s, i.e. instantaneous chimes).

x cannot be greater than 1, or else it violates the initial 7x+6y=7 equation given by Miko above; if x>1 then y<0, which, unless the clock also happens to be a TARDIS, is slightly impossible. And of course x can't be less than 0s, again unless the clock also happens to be one of the aforementioned TARDISs (TARDII?).

Adrianus Says:

June 15, 2009 at 5:26 am | Reply
Can Albert check time on a more precise scale than 1 second?

I am hard pressed to think so.

So whatever the mathematical answer might be, Albert *will* find the 10 o’clock chimes to be 10 seconds.

Btw. I did get the formula. But the funny thing is, the longer a chime reverbs and thus gets closer to a full second, the closer the pause gets to 0 and the closer the answer gets to 10 seconds.

Adrianus Says:

June 15, 2009 at 5:27 am | Reply
@myself… the closer the answer gets to 11 seconds…. oops.

Adrianus Says:

June 15, 2009 at 5:29 am | Reply
Awww, what the heck, I decided to spring for a digital clock for Albert… what’s his address?

Alex Garner Says:

June 15, 2009 at 5:55 am | Reply
I took the 7 seconds to include the full 4 lines of the westminster quarters chimes, plus the 7 strikes of the hour…

http://en.wikipedia.org/wiki/Westminster_Quarters

So my by my calculations, the majority of the 7 seconds is used for the Westminster Quarters full hour chime (about 6 seconds 1.5 seconds per verse) and the last 1 second for the 7 chimes of the hour, so the difference for an additional 3 chimes is about 3/7ths of a second, or negligible.

Briantist Says:

June 15, 2009 at 6:45 am | Reply
100% right … As I said, just like the barcode problem!

Mchl Says:

June 15, 2009 at 6:58 am | Reply
This is too far fetched IMHO.

Nick Sharratt Says:

June 15, 2009 at 6:59 am | Reply
I like the first posters simultaneous equation approach – I saw both cases as possible answers but without realizing the continum of possible answers depending on the pause, just the two extreme cases. I now see that the strike can happen at any point while the last chime is still ringing too such that the last chime ending ringing could take a different time too – so:

7x + y = 7 and
10x + y = 10

(would only be true if y=0 so if a bell doesn’t keep ringing after being struck, which is not true) – so if the end of the chimes is taken to be when the last stike stops ringing, then with the pauses less then the time a chime rings 10secs would be wrong too.

Disappointed it is a trivial maths ‘gotcha’ rather than a psychologically revealing puzzle though, but pleased I saw the fairly obvious answer anyhow

Lafayette Says:

June 15, 2009 at 7:29 am | Reply
I got the answer three hours and three and a half seconds, which is the length of time from the seventh chime at seven o’clock and the tenth at ten o’clock.

I suspect that the chiming mechanisms of most clocks do not take into account the length of the chime’s ring itself. My personal interpretation here is that a clock finishes striking a time when the last bell is “struck”, not when that bell finishes sounding. It’s the attack, baby, not the decay.

Matthew Wilkes Says:

June 15, 2009 at 8:10 am | Reply
I did not see that one at all. I feel ashamed.
Good puzzle

Janine Says:

June 15, 2009 at 8:26 am | Reply
My first solution was thinking there must be a twist so I thought the answer must be timed from the end of the seventh chime of seven o’clock and the end of the tenth chime of 10 o’clock! This answer assumed we were talking about 7am and 10am. So I came up with the same 3 hours 3 and a half seconds as Lafayette just said.

My second solution was the 10.5 seconds!

Then I thought we could look at it being 7am and 10pm but of course that would be the second time it would strike 10 o’clock so I realised that wasn’t a viable answer but if it had of been it would have been 15 hours 3 and a half seconds.

Jarak Says:

June 15, 2009 at 9:05 am | Reply
There has been no mention of an “intro” yet either.

Many clocks have a small chimed piece of music before ringing the hour.
This could further complicate the issue.

7x + 6y = 7 – z

uksceptic Says:

June 15, 2009 at 9:08 am | Reply
I had three hours answer as my solution to the first problem but once you reworded the question I got the other answer.

I thought the first answer was a lateral thinking problem that I have come to expect from these! The second was more of a straight maths puzzle.

Michael Gray Says:

June 15, 2009 at 9:31 am | Reply
I trust that the gentle reader will deem to excuse any slips o’the keyboard, but here is my quick analysis of the conundrum:

There are two essentially believable scenarios* in this perfect puzzle world, apart from the tricky notions to which I alluded in a previous post.
(More on that later)

Scenario:
a) Where the period in question is measured from the start of the first chime to the end of the last chime.
b) Where the period in question is measured from the start of the first chime to the beginning of the last chime.

These two scenarios resolve into 4 variables:
1) The number of chimes (Which I shall call ‘n’)
2) The duration of the chime (Which I shall call ‘Tc’)
3) The duration of the intervening silence (Which I shall call ‘Ts’)
4) The target ‘total’ duration. (Which I shall call ‘Tt’)

For scenario a), the equation is:
Tt=n*Tc+(n-1)*Ts
(e.g.: #_#_#_#_#_#_#, for n=7)

For scenario b), the equation is:
Tt=n*Tc+(n-0)*Ts
=n*Tc+n*Ts
=n*(Tc+Ts)
(e.g.: #_#_#_#_#_#_, for n=7)

__________________
Lets work the a) case for both 7 & 10:
n=7?
a) Tt=n*Tc+(n-1)*Ts
=7*Tc+6*Ts

n=10?
a) Tt=n*Tc+(n-1)*Ts
=10*Tc+9*Ts
—————
—————
Now the b) case for both 7 & 10:
n=7?
b) Tt=n*(Tc+Ts)
=7*(Tc+Ts)

n=10?
b) Tt=n*(Tc+Ts)
=10*(Tc+Ts)
—————

Now, the question is: are n=7 & n=10 produce and equal (Total Period)/n in either of these scenarios?

This amounts to asking does:

a1)
Tt(7)/n==Tt(10)/n??
or
(7*Tc+6*Ts)/7==(10*Tc+9*Ts)/10 ?
or
b1)
7*(Tc+Ts)/7==10*(Tc+Ts)/10 ?
(this obviously simplifies to: Tc+Ts==Tc+Ts, which is trivially true.)

—————–
a1) Is true, provided that the silence lasts for 0 seconds, otherwise false.
b1) Is ALWAYS true!

So, I was guardedly correct** (No) for scenario a), but quite wrong for scenario b)!!

The resolution of this puzzle has therefore been rigorously proven to depend upon the assumption of how the total chime length is determined.
For start of chime 1, to END of chime ‘n’, the answer is NEGATIVE.
For start of chime 1, to START of chime ‘n’, the answer is POSITIVE!*

———————
OK: The tricky notions, regarding the question as implying the temporal distance between the 7 o’clock chimes, and the 10 o’clock chimes.
There are several options available here for consideration:
The gaps:
7am to 10am ~ 3h
7am to 10pm ~ 3+12=15h
7pm to 10pm ~ 3+12=15h
7pm to 10pm ~ 3h

Which resolve down to two distinct durations:
3h & 15h
Both of which are subject to the a) & b) condition of the judgement of the length of a “strike”.

These trick answers are bogus, in my opinion, but don’t tell Richard that I said that, or he may join the BCA!
But do inform him (for that is, I understand, the prime target of these puzzles), that all of the above machinations had occurred to me in my head, (not to commit in writing), in under say, a minute.
Possibly closer to 30 seconds than a full minute.
It is a burden to be a systems analyst with Asperger’s!

_____________
* That the chime durations are equal, and the silence durations are equal.
** In assuming that the silent gaps were not zero length.


Michael Gray Says:

June 15, 2009 at 9:32 am | Reply
I trust that the gentle reader will deem to excuse any slips o’the keyboard, but here is my quick analysis of the conundrum:

There are two essentially believable scenarios* in this perfect puzzle world, apart from the tricky notions to which I alluded in a previous post.
(More on that later)

Scenario:
a) Where the period in question is measured from the start of the first chime to the end of the last chime.
b) Where the period in question is measured from the start of the first chime to the beginning of the last chime.

These two scenarios resolve into 4 variables:
1) The number of chimes (Which I shall call ‘n’)
2) The duration of the chime (Which I shall call ‘Tc’)
3) The duration of the intervening silence (Which I shall call ‘Ts’)
4) The target ‘total’ duration. (Which I shall call ‘Tt’)

For scenario a), the equation is:
Tt=n*Tc+(n-1)*Ts
(e.g.: #_#_#_#_#_#_#, for n=7)

For scenario b), the equation is:
Tt=n*Tc+(n-0)*Ts
=n*Tc+n*Ts
=n*(Tc+Ts)
(e.g.: #_#_#_#_#_#_, for n=7)

__________________
Lets work the a) case for both 7 & 10:
n=7?
a) Tt=n*Tc+(n-1)*Ts
=7*Tc+6*Ts

n=10?
a) Tt=n*Tc+(n-1)*Ts
=10*Tc+9*Ts
—————
—————
Now the b) case for both 7 & 10:
n=7?
b) Tt=n*(Tc+Ts)
=7*(Tc+Ts)

n=10?
b) Tt=n*(Tc+Ts)
=10*(Tc+Ts)
—————

Now, the question is: are n=7 & n=10 produce and equal (Total Period)/n in either of these scenarios?

This amounts to asking does:

a1)
Tt(7)/n==Tt(10)/n??
or
(7*Tc+6*Ts)/7==(10*Tc+9*Ts)/10 ?
or
b1)
7*(Tc+Ts)/7==10*(Tc+Ts)/10 ?
(this obviously simplifies to: Tc+Ts==Tc+Ts, which is trivially true.)

—————–
a1) Is true, provided that the silence lasts for 0 seconds, otherwise false.
b1) Is ALWAYS true!

So, I was guardedly correct** (No) for scenario a), but quite wrong for scenario b)!!

The resolution of this puzzle has therefore been rigorously proven to depend upon the assumption of how the total chime length is determined.
For start of chime 1, to END of chime ‘n’, the answer is NEGATIVE.
For start of chime 1, to START of chime ‘n’, the answer is POSITIVE!*

———————
OK: The tricky notions, regarding the question as implying the temporal distance between the 7 o’clock chimes, and the 10 o’clock chimes.
There are several options available here for consideration:
The gaps:
7am to 10am ~ 3h
7am to 10pm ~ 3+12=15h
7pm to 10pm ~ 3+12=15h
7pm to 10pm ~ 3h

Which resolve down to two distinct durations:
3h & 15h
Both of which are subject to the a) & b) condition of the judgement of the length of a “strike”.

These trick answers are bogus, in my opinion, but don’t tell Richard that I said that, or he may join the BCA!
But do inform him (for that is, I understand, the prime target of these puzzles), that all of the above machinations had occurred to me in my head, (not to commit in writing), in under say, a minute.
Possibly closer to 30 seconds than a full minute.
It is a burden to be a systems analyst with Asperger’s!

_____________
* That the chime durations are equal, and the silence durations are equal.
** In assuming that the silent gaps were not zero length.

Michael Gray Says:

June 15, 2009 at 9:35 am | Reply
There are two essentially believable scenarios* in this perfect puzzle world, apart from the tricky notions to which I alluded in a previous post.
(More on that later)

Scenario:
a) Where the period in question is measured from the start of the first chime to the end of the last chime.
b) Where the period in question is measured from the start of the first chime to the beginning of the last chime.

These two scenarios resolve into 4 variables:
1) The number of chimes (Which I shall call ‘n’)
2) The duration of the chime (Which I shall call ‘Tc’)
3) The duration of the intervening silence (Which I shall call ‘Ts’)
4) The target ‘total’ duration. (Which I shall call ‘Tt’)

For scenario a), the equation is:
Tt=n*Tc+(n-1)*Ts
(e.g.: #_#_#_#_#_#_#, for n=7)

For scenario b), the equation is:
Tt=n*Tc+(n-0)*Ts
=n*Tc+n*Ts
=n*(Tc+Ts)
(e.g.: #_#_#_#_#_#_, for n=7)

__________________
Lets work the a) case for both 7 & 10:
n=7?
a) Tt=n*Tc+(n-1)*Ts
=7*Tc+6*Ts

n=10?
a) Tt=n*Tc+(n-1)*Ts
=10*Tc+9*Ts
—————
Now the b) case for both 7 & 10:
n=7?
b) Tt=n*(Tc+Ts)
=7*(Tc+Ts)

n=10?
b) Tt=n*(Tc+Ts)
=10*(Tc+Ts)
—————

Now, the question is: are n=7 & n=10 produce and equal (Total Period)/n in either of these scenarios?

This amounts to asking:

a1)
Tt(7)/n==Tt(10)/n??
or
(7*Tc+6*Ts)/7==(10*Tc+9*Ts)/10 ?
or
b1)
7*(Tc+Ts)/7==10*(Tc+Ts)/10 ?
(this obviously simplifies to: Tc+Ts==Tc+Ts, which is trivially true.)

—————–
a1) Is true, provided that the silence lasts for 0 seconds, otherwise false.
b1) Is ALWAYS true!

So, I was guardedly correct** (No) for scenario a), but quite wrong for scenario b)!!

The resolution of this puzzle has therefore been rigorously proven to depend upon the assumption of how the total chime length is determined.
For start of chime 1, to END of chime ‘n’, the answer is NEGATIVE.
For start of chime 1, to START of chime ‘n’, the answer is POSITIVE!*

———————
OK: The tricky notions, regarding the question as implying the temporal distance between the 7 o’clock chimes, and the 10 o’clock chimes.
There are several options available here for consideration:
The gaps:
7am to 10am ~ 3h
7am to 10pm ~ 3+12=15h
7pm to 10pm ~ 3+12=15h
7pm to 10pm ~ 3h

Which resolve down to two distinct durations:
3h & 15h
Both of which are subject to the a) & b) condition of the judgement of the length of a “strike”.

These trick answers are bogus, in my opinion, but don’t tell Richard that I said that, or he may join the BCA!
But do inform him (for that is, I understand, the prime target of these puzzles), that all of the above machinations had occurred to me in my head, (not to commit in writing), in under say, a minute.
Possibly closer to 30 seconds than a full minute.
It is a burden to be a systems analyst with Asperger’s!
_____________
* That the chime durations are equal, and the silence durations are equal.
** In assuming that the silent gaps were not zero length.

Michael Gray Says:

June 15, 2009 at 9:36 am | Reply
Part 1?
There are two essentially believable scenarios* in this perfect puzzle world, apart from the tricky notions to which I alluded in a previous post.
(More on that later)

Scenario:
a) Where the period in question is measured from the start of the first chime to the end of the last chime.
b) Where the period in question is measured from the start of the first chime to the beginning of the last chime.

These two scenarios resolve into 4 variables:
1) The number of chimes (Which I shall call ‘n’)
2) The duration of the chime (Which I shall call ‘Tc’)
3) The duration of the intervening silence (Which I shall call ‘Ts’)
4) The target ‘total’ duration. (Which I shall call ‘Tt’)

For scenario a), the equation is:
Tt=n*Tc+(n-1)*Ts
(e.g.: #_#_#_#_#_#_#, for n=7)

For scenario b), the equation is:
Tt=n*Tc+(n-0)*Ts
=n*Tc+n*Ts
=n*(Tc+Ts)
(e.g.: #_#_#_#_#_#_, for n=7)

__________________
Lets work the a) case for both 7 & 10:
n=7?
a) Tt=n*Tc+(n-1)*Ts
=7*Tc+6*Ts

n=10?
a) Tt=n*Tc+(n-1)*Ts
=10*Tc+9*Ts
—————
Now the b) case for both 7 & 10:
n=7?
b) Tt=n*(Tc+Ts)
=7*(Tc+Ts)

n=10?
b) Tt=n*(Tc+Ts)
=10*(Tc+Ts)
—————

Now, the question is: are n=7 & n=10 produce and equal (Total Period)/n in either of these scenarios?

This amounts to asking:

a1)
Tt(7)/n==Tt(10)/n??
or
(7*Tc+6*Ts)/7==(10*Tc+9*Ts)/10 ?
or
b1)
7*(Tc+Ts)/7==10*(Tc+Ts)/10 ?
(this obviously simplifies to: Tc+Ts==Tc+Ts, which is trivially true.)

—————–
a1) Is true, provided that the silence lasts for 0 seconds, otherwise false.
b1) Is ALWAYS true!

So, I was guardedly correct** (No) for scenario a), but quite wrong for scenario b)!!

Milt Says:

June 15, 2009 at 9:37 am | Reply
I would say there are 6 chimes and 6 pauses (+intro) for the clock to ’strike’ 7
Once you’ve ’struck’ the 7th chime, we have struck 7 by definition, and do not have to include the amplitude envelope of the 7th chime. So each chime + pause takes 7/6 secs.
With no intro striking 10 would take 9*(7/6) = 10.5 secs
With intro there are 2 many variables 6c + i = 7, to solve c & i but
is it possible to strike 10 in 10 seconds given this scenario?: 9c + i = 10

Sure – each chime takes 1 second and there is a 1 second intro would solve.

I just got up, so the above may well be nonsense.

Michael Gray Says:

June 15, 2009 at 9:37 am | Reply
There are two essentially believable scenarios* in this perfect puzzle world, apart from the tricky notions to which I alluded in a previous post.
(More on that later)

Scenario:
a) Where the period in question is measured from the start of the first chime to the end of the last chime.
b) Where the period in question is measured from the start of the first chime to the beginning of the last chime.

These two scenarios resolve into 4 variables:
1) The number of chimes (Which I shall call ‘n’)
2) The duration of the chime (Which I shall call ‘Tc’)
3) The duration of the intervening silence (Which I shall call ‘Ts’)
4) The target ‘total’ duration. (Which I shall call ‘Tt’)

Continued…

Michael Gray Says:

June 15, 2009 at 9:38 am | Reply
…continued

For scenario a), the equation is:
Tt=n*Tc+(n-1)*Ts
(e.g.: #_#_#_#_#_#_#, for n=7)

For scenario b), the equation is:
Tt=n*Tc+(n-0)*Ts
=n*Tc+n*Ts
=n*(Tc+Ts)
(e.g.: #_#_#_#_#_#_, for n=7)

__________________
Lets work the a) case for both 7 & 10:
n=7?
a) Tt=n*Tc+(n-1)*Ts
=7*Tc+6*Ts

n=10?
a) Tt=n*Tc+(n-1)*Ts
=10*Tc+9*Ts
—————
Now the b) case for both 7 & 10:
n=7?
b) Tt=n*(Tc+Ts)
=7*(Tc+Ts)

n=10?
b) Tt=n*(Tc+Ts)
=10*(Tc+Ts)
—————

Now, the question is: are n=7 & n=10 produce and equal (Total Period)/n in either of these scenarios?

This amounts to asking:

a1)
Tt(7)/n==Tt(10)/n??
or
(7*Tc+6*Ts)/7==(10*Tc+9*Ts)/10 ?
or
b1)
7*(Tc+Ts)/7==10*(Tc+Ts)/10 ?
(this obviously simplifies to: Tc+Ts==Tc+Ts, which is trivially true.)

—————–
a1) Is true, provided that the silence lasts for 0 seconds, otherwise false.
b1) Is ALWAYS true!

So, I was guardedly correct** (No) for scenario a), but quite wrong for scenario b)!!

The resolution of this puzzle has therefore been rigorously proven to depend upon the assumption of how the total chime length is determined.
For start of chime 1, to END of chime ‘n’, the answer is NEGATIVE.
For start of chime 1, to START of chime ‘n’, the answer is POSITIVE!*

Michael Gray Says:

June 15, 2009 at 9:39 am | Reply
For scenario a), the equation is:
Tt=n*Tc+(n-1)*Ts
(e.g.: #_#_#_#_#_#_#, for n=7)

For scenario b), the equation is:
Tt=n*Tc+(n-0)*Ts
=n*Tc+n*Ts
=n*(Tc+Ts)
(e.g.: #_#_#_#_#_#_, for n=7)

__________________
Lets work the a) case for both 7 & 10:
n=7?
a) Tt=n*Tc+(n-1)*Ts
=7*Tc+6*Ts

n=10?
a) Tt=n*Tc+(n-1)*Ts
=10*Tc+9*Ts
—————
Now the b) case for both 7 & 10:
n=7?
b) Tt=n*(Tc+Ts)
=7*(Tc+Ts)

n=10?
b) Tt=n*(Tc+Ts)
=10*(Tc+Ts)

Michael Gray Says:

June 15, 2009 at 9:40 am | Reply
…For scenario a), the equation is:
Tt=n*Tc+(n-1)*Ts
(e.g.: #_#_#_#_#_#_#, for n=7)

For scenario b), the equation is:
Tt=n*Tc+(n-0)*Ts
=n*Tc+n*Ts
=n*(Tc+Ts)
(e.g.: #_#_#_#_#_#_, for n=7)

Lets work the a) case for both 7 & 10:
n=7?
a) Tt=n*Tc+(n-1)*Ts
=7*Tc+6*Ts

n=10?
a) Tt=n*Tc+(n-1)*Ts
=10*Tc+9*Ts
—————
Now the b) case for both 7 & 10:
n=7?
b) Tt=n*(Tc+Ts)
=7*(Tc+Ts)

n=10?
b) Tt=n*(Tc+Ts)
=10*(Tc+Ts)

Michael Gray Says:

June 15, 2009 at 9:41 am | Reply
…Now, the question is: are n=7 & n=10 produce and equal (Total Period)/n in either of these scenarios?

This amounts to asking does:

a1)
Tt(7)/n==Tt(10)/n??
or
(7*Tc+6*Ts)/7==(10*Tc+9*Ts)/10 ?
or
b1)
7*(Tc+Ts)/7==10*(Tc+Ts)/10 ?
(this obviously simplifies to: Tc+Ts==Tc+Ts, which is trivially true.)

—————–
a1) Is true, provided that the silence lasts for 0 seconds, otherwise false.
b1) Is ALWAYS true!

So, I was guardedly correct** (No) for scenario a), but quite wrong for scenario b)!!

The resolution of this puzzle has therefore been rigorously proven to depend upon the assumption of how the total chime length is determined.
For start of chime 1, to END of chime ‘n’, the answer is NEGATIVE.
For start of chime 1, to START of chime ‘n’, the answer is POSITIVE!*

Michael Gray Says:

June 15, 2009 at 9:42 am | Reply
…OK: The tricky notions, regarding the question as implying the temporal distance between the 7 o’clock chimes, and the 10 o’clock chimes.
There are several options available here for consideration:
The gaps:
7am to 10am ~ 3h
7am to 10pm ~ 3+12=15h
7pm to 10pm ~ 3+12=15h
7pm to 10pm ~ 3h

Which resolve down to two distinct durations:
3h & 15h
Both of which are subject to the a) & b) condition of the judgement of the length of a “strike”.

These trick answers are bogus, in my opinion, but don’t tell Richard that I said that, or he may join the BCA!
But do inform him (for that is, I understand, the prime target of these puzzles), that all of the above machinations had occurred to me in my head, (not to commit in writing), in under say, a minute.
Possibly closer to 30 seconds than a full minute.
It is a burden to be a systems analyst with Asperger’s!

_____________
* That the chime durations are equal, and the silence durations are equal.
** In assuming that the silent gaps were not zero length.

Michael Gray Says:

June 15, 2009 at 9:43 am | Reply
P.S. Where are my 100 points?
I accept luncheon vouchers and book tokens.
I’m not proud.

Victor Meldrew Says:

June 15, 2009 at 9:58 am | Reply
Pleased to report that I do not have to eat any humble pie (7/6*9=10.4999=~10.5). This reminds me of the kind of maths I was taught for the 11-plus. That dates me, doesn’t it!

I did not get the 3 hrs answer however; loved that one.

Atticus Says:

June 15, 2009 at 10:09 am | Reply
Dammitt!! My answer was way out but its still possible….let me try and explain my thinking:

When in the question it said it takes 7 seconds to strike 7 ‘o’clock i took this literally.

Meaning that the time was 7 secs to 7 ‘o’clock
Taking that time and applying it to the 10 ‘o’clock situ, it would still take 7 secs as it would be 7 secs to 10 ‘o’clock.

So on that working, my answer was ‘7 seconds’!

Am i alone here or can anyone else see my logic? :s

Katobell Says:

June 15, 2009 at 10:20 am | Reply
Yeah, to be honest, although I can see the logic in all of the scenarios, there’s nowhere near enough information for an even vaguely accurate answer… some clocks don’t even chime the number of hours, just have a set sound or series of sounds – for example every hour or quarter-hour – so it’s equally plausible that the time this takes is seven seconds, no matter which hour.

Michael Gray Says:

June 15, 2009 at 10:39 am | Reply
BTW, the tricky answer has 4 possible solutions, including from the ‘3 hours’ one:

1) 3 hours
2) 3 hours LESS the chime duration
3) 15 hours
4) 15 hours LESS the chime duration

Consider the AM/PM conundrum.

Esther Says:

June 15, 2009 at 10:49 am | Reply
got it right!

ScreamingGreenConure Says:

June 15, 2009 at 11:27 am | Reply
Am I seriously the only person who did what I did? Come on. Someone else has to have added the number of chimes to pauses and divided the time by it. I swear to god, it makes sense even if it IS wrong.

Michael Gray Says:

June 15, 2009 at 11:53 am | Reply
@ScreamingGreenConure

As Ben Goldacre is fond of saying:
“It is not that simple!”

But you were correct, given a number of plausible assumptions…

ScreamingGreenConure Says:

June 15, 2009 at 12:01 pm | Reply
The correct solution doesn’t take chime length into account, right? I don’t get it. I know I can’t know for certain that the chimes and pauses are exactly equal in length, but I know that the chime has to take longer than no time at all. If 7 o’clock has 7 chimes and 6 pauses, then the pauses can’t take 7/6 seconds, because then there would be no chimes. One chime plus one pause combined must take a little less than a second for 7 o’clock to take 7 seconds exactly.
My head hurts.

Garrett Says:

June 15, 2009 at 3:58 pm | Reply
@Michael Gray: I think you made it more complicated than it needs to be. You don’t need to know the length of silence in between each chime. We just need to know the rate at which each new chime starts.

So in scenario a (Length of time from beginning to the end of the last chime) we just need to know how long the last chime goes for. and in scenario b we don’t even need to know that much.

Alex Garner did bring up the Westminster Quarters issue which would also have a large effect on the calculation.

In the end, the equation I came up with is as follows:

[(7-C-W)/6] * (H-1) + C + W

C: Length of last chime — This can be set to 0 for scenario a
W: Length of tune clock plays before hour chimes.
H: Hour of day.

So for the basic reading of how the question was intended the result is:
[(7-0-0)/6] * (10-1) + 0 + 0
(7/6) * 9 = 10.5

If we are counting the length of the last chime, then any combination for C & W where C + W = 1s would result in the clock taking 10s to chime for 10 o’clock.

uksceptic Says:

June 15, 2009 at 5:15 pm | Reply
Michael you have too much time on your hands!

SuperHappyJen Says:

June 15, 2009 at 7:19 pm | Reply
I was thinking 3 hours and change, because he had to wait for ten o’clock to come.

Michael Gray Says:

June 16, 2009 at 12:39 am | Reply
@Garrett
“…I think you made it more complicated than it needs to be. You don’t need to know the length of silence in between each chime…”

Not true for my scenario a), but true for scenario b).
See my references labelled a1) & b1)

Michael Gray Says:

June 16, 2009 at 9:48 am | Reply
@uksceptic
Michael you have too much time on your hands!

If I have 2 much time on my hands, how long would 7 much time be?

Dave Rife Says:

June 16, 2009 at 2:59 pm | Reply
Just my two cents (or pence, depending on which side of the pond you’re on):
“Assuming” a little foolishness, and deciding that we are watching the clock throughout its cycles, it is interesting to note that as Americans we enjoy the perception that the hour is struck at first ‘chime’ of the hour. It is my understanding that Brits enjoy the perception that the hour is struck at the last ‘chime’ of the hour. Again, assuming we are discussing an “a.m. to a.m.” cycle:
In America, the cycle would be 3 hours.
In Great Britian, the cycle would be 3 hours and 3 seconds.

Top Posts « WordPress.com Says:

June 17, 2009 at 12:25 am | Reply
[...] Answer to the Friday puzzle! Last week I posted this puzzle… Albert works in a clock factory. He has noticed that his favourite clock in the [...] [...]

Jeremy Says:

June 23, 2009 at 11:29 am | Reply
My initial response was to try to work out the timing between the strikes, but then the answer “3 hours and 7 seconds” occurred to me, and I liked that answer much better.

If it takes 7 seconds to strike 7 O’clock, then it must be 7 seconds to 7. It is therefore 3 hours and 7 seconds to 10 O’clock.

د سالم الفيفي
06-26-2009, 12:27AM
مبروك يافواز كان نفسي انا احلها بس يلاااا
الف مبررروووك لك
ومشكوور دكتورنا على اللغز الرائع


الأخت الكريمة

الحياه كلمة

كل الشكر والتقدير لمرورك الكريم ...

ريف النشاما
06-26-2009, 12:28AM
دكتور كل شي اسألني فيه ألا

العنقليزي زي مايقولون من جنب القده خخخخخخخخخخ

..........................................

عقاب . شموخ نجد . غالب المطيري . الدكتور سالم . الحياة كلمه .

اشكر لكم الحضور و المشاركة و الله يبارك فيكم جميعاً

و الحمد لله ان زايد ماهو فيه كان حل اللغز قدامي

لأن عنده طريقه حلوه في حل الالغاااز

خخخخخخخخخخخخخخ

د سالم الفيفي
06-26-2009, 12:30AM
الف مبروك يافواز
ماشاءالله عليك جبتها
الله يحفظك
بنتظار لغزك القادم
والف شكر لدكتورعلى الغز
والشكرموصول للاخوان على المحاولات

دمتم بود

القديرة شموخ نجد

شكري و تقديري لمرورك مرة أخرى

عقاب
06-26-2009, 12:31AM
دكتووووووووووووو ر ههههههههههههههههههههههه

هذا كتلوج ثلاجه 24 قدم مو حلول

ههههههههههههههههههه

كل هاذي حلول عندهم هههههههههههههههه

وحنا حليناه بسطرين يوم حله فواز ههههههههههه

د سالم الفيفي
06-26-2009, 12:34AM
دكتور كل شي اسألني فيه ألا

العنقليزي زي مايقولون من جنب القده خخخخخخخخخخ

..........................................

عقاب . شموخ نجد . غالب المطيري . الدكتور سالم . الحياة كلمه .

اشكر لكم الحضور و المشاركة و الله يبارك فيكم جميعاً

و الحمد لله ان زايد ماهو فيه كان حل اللغز قدامي

لأن عنده طريقه حلوه في حل الالغاااز

خخخخخخخخخخخخخخ

الأخ فواز ما عليك من العنقليزي زي ما قلت ههههه

تكفينا لغة القرأن الكريم العربية فهي أجمل وأبلغ لغة على وجه الأرض ...

رياض الهديرس
06-26-2009, 12:49AM
ماشاء الله عليك يافواز



صح لسانك


وصح لسانك يادكتور



تحياتي

ريف النشاما
06-26-2009, 01:11AM
رياض الهديريس

حياك الله و الله يبارك فيك

د سالم الفيفي
06-26-2009, 01:23AM
دكتووووووووووووو ر ههههههههههههههههههههههه

هذا كتلوج ثلاجه 24 قدم مو حلول

ههههههههههههههههههه

كل هاذي حلول عندهم هههههههههههههههه

وحنا حليناه بسطرين يوم حله فواز ههههههههههه

ههههههههههههههههههههههههههههههههههههههههههههههههه

حلوة كتلوج ثلاجة !!!!!!!!!!

متعبين أنفسهم بمعادلات و رياضيات و جبر وأشياء كثيرة معادلات بمجهول و مجهولين و هيصه طويلة و عريضة

على فكرة هذا المنتدى كل أسبوع يطلع لغز فيه راح أنزله .. عشان شكلك يا عقاب ما يقدر عليك غير الأمريكان !!